IIT-D study reveals mechanisms driving SARS-CoV-2 evolution in humans

June 01, 2022 | Wednesday | News

The results lay the necessary groundwork for future studies

image credit- shutterstock

image credit- shutterstock

A team of researchers at the Indian Institute of Technology Delhi (IIT-D) has discovered the existence of temporal variations in selection pressures during SARS-CoV-2 evolution and adaptation to the human host.

CpG (or CG; i.e. a cytosine followed by a guanine) numbers in virus genomes has been linked to host-switching, efficiency of virus replication, immune evasion and the ability of a virus to cause disease.

Zinc-finger antiviral protein (ZAP), a host protein that can bind to CpG-rich regions in SARS-CoV-2 (and other RNA viruses) and recruits other host proteins to degrade the viral RNA. Several viruses including HIV-1, Influenza A virus and SARS-CoV-2 prefer to reduce their CpG content (by losing CpGs) to minimize the host immune response, thus allowing better virus replication and survival.

The team analyzed over 1.4 million full-length SARS-CoV-2 sequences from across the world. They found that the rate of CpG depletion from SARS-CoV-2 genomes rapidly decreases after the first few months of evolution in humans. Furthermore, most SARS-CoV-2 variants of concern had lower CpG content. This work highlights the existence of selection pressures apart from ZAP that may lead to CpG depletion in SARS-CoV-2 genomes.

Dr. Sonam Dhamija, a co-author on the paper, said, “This work has relevance to our current understanding of SARS-CoV-2 pathogenesis, immune evasion and emergence of variants of concern”.

Comments

× Your session has expired. Please click here to Sign-in or Sign-up

Have an Account?

Forgot your password?

First Name should not be empty!

Last Name should not be empty!

Email address should not be empty!

Show Password should not be empty!

Show Confirm Password should not be empty!

Newsletter

E-magazine

Biospectrum Infomercial

Bio Resource

I accept the terms & conditions & Privacy policy